$\gamma = 92.410 \ (7)^{\circ}$

Mo $K\alpha$ radiation

 $\mu = 1.11 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.027$

325 parameters

 $\Delta \rho_{\text{max}} = 0.97 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.48 \text{ e } \text{\AA}^{-3}$

Z = 2

V = 1065.60 (16) Å³

 $0.52 \times 0.38 \times 0.27 \text{ mm}$

15437 measured reflections

5431 independent reflections

4512 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aqua(nitrato- $\kappa^2 O, O'$)bis(4-nitrobenzohydrazide- $\kappa^2 N^2, O$)cadmium(II) nitrate

S. Yu. Chundak,^a L. Yu. Lukachinec^a and M. Daszkiewicz^b*

^aFaculty of Chemistry, Uzhgorod State University, Uzhgorod, Ukraine, and ^bW. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna str. 2, PO Box 1410, 50-950 Wrocław, Poland Correspondence e-mail: m.daszkiewicz@int.pan.wroc.pl

Received 16 October 2007; accepted 19 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.026; wR factor = 0.052; data-to-parameter ratio = 16.7.

In the title compound, $[Cd(NO_3)(C_7H_7N_3O_3)_2(H_2O)]NO_3$, the Cd atom is coordinated by two organic ligands, a water molecule and a nitrate anion. The coordination can be described as distorted pentagonal bipyramidal. Geometric parameters show that the nitrate anion is coordinated in the bidentate mode. Non-coordinated and bidentate chelating nitrates create hydrogen-bonding networks in the *a*- and *b*-axis directions, respectively. Parallel-oriented 4-nitrobenzohydrazides help to establish the packing.

Related literature

For geometrical studies of the coordination mode of the nitrate anion, see: Kleywegt *et al.* (1985) and Dowling *et al.*, (1996).

Experimental

Crystal data

 $\begin{bmatrix} Cd(NO_3)(C_7H_7N_3O_3)_2(H_2O) \end{bmatrix} NO_3 \\ M_r = 616.75 \\ Triclinic, P\overline{1} \\ a = 5.6112 (5) Å \\ b = 13.1253 (12) Å \\ c = 14.8985 (13) Å \\ \alpha = 101.314 (8)^{\circ} \\ \beta = 96.944 (7)^{\circ} \end{bmatrix}$

Data collection

Kuma KM-4 diffractometer with CCD area-detector Absorption correction: numerical (CrysAlis; Mayer, 2006) $T_{min} = 0.732, T_{max} = 0.871$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.052$ S = 0.975431 reflections

Table 1

Selected geometric parameters (Å, °).

Cd1-OW1	2.2590 (14)	Cd1-N12B	2.3518 (16)
Cd1-011A	2.3242 (13)	Cd1-O1A	2.3934 (13)
Cd1-O11B	2.3339 (12)	Cd1 - O2A	2.5755 (15)
Cd1-N12A	2.3489 (17)		
OW1-Cd1-O1A	98.97 (5)	O11B-Cd1-O1A	81.00 (5)
OW1-Cd1-O2A	89.50 (6)	O11B-Cd1-O2A	81.90 (5)
OW1-Cd1-O11A	93.34 (5)	O11B-Cd1-N12A	100.01 (6)
OW1-Cd1-O11B	168.98 (5)	O11B-Cd1-N12B	71.62 (5)
OW1-Cd1-N12A	90.92 (6)	N12A-Cd1-O1A	83.53 (5)
OW1-Cd1-N12B	99.57 (5)	N12A-Cd1-O2A	133.98 (5)
O11A-Cd1-O1A	150.85 (5)	N12A-Cd1-N12B	149.50 (6)
O11A-Cd1-O2A	155.97 (5)	N12B-Cd1-O1A	122.36 (5)
O11A-Cd1-O11B	91.78 (5)	N12B-Cd1-O2A	75.09 (5)
O11A-Cd1-N12A	69.88 (5)	O1A-Cd1-O2A	51.06 (4)
O11A-Cd1-N12B	80.91 (5)		

Table 2			
Hydrogen-bond	geometry ((Å,	°).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N11A - H11A \cdots O3B^{1}$	0.86	2.03	2.886 (2)	171.2
$N12A - H21A \cdots O1B^{i}$	0.87	2.42	2.977 (2)	122.2
$N12A - H22A \cdots O1B$	0.86	2.60	3.209 (2)	128.8
$N11B - H11B \cdots O3A^{ii}$	0.84	2.59	3.176 (2)	127.6
$N12B - H22B \cdots O11B^{iii}$	0.86	2.40	3.212 (2)	156.9
$OW1-HW1\cdots O1A^{iii}$	0.84	2.05	2.815 (2)	151.2
$OW1-HW2\cdots O2B$	0.82	1.95	2.769 (2)	174.2

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) x - 1, y, z.

Data collection: *CrysAlis* (Mayer, 2006); cell refinement: *CrysAlis*; data reduction: *CrysAlis*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2005); software used to prepare material for publication: *publCIF* (Westrip, 2007).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2039).

References

- Brandenburg, K. (2005). DIAMOND. Release 3.0e. Crystal Impact GbR, Bonn, Germany.
- Dowling, C., Murphy, V. J. & Parkin, G. (1996). *Inorg. Chem.* 35, 2415–2420.
 Kleywegt, G. J., Wiesmeijer, W. G. R., Van Driel, G. J., Driessen, W. L., Reedijk, J. & Noordik, J. H. (1985). *J. Chem. Soc. Dalton Trans.* pp. 2177– 2184.

Mayer, M. (2006). CrysAlis. Version 1.171.30.3. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Westrip, S. P. (2007). publCIF. In preparation.

Acta Cryst. (2007). E63, m2815-m2816 [doi:10.1107/S1600536807051914]

Aqua(nitrato- $\kappa^2 O, O'$)bis(4-nitrobenzohydrazide- $\kappa^2 N^2, O$)cadmium(II) nitrate

S. Y. Chundak, L. Y. Lukachinec and M. Daszkiewicz

Comment

In the title compound, cadmium is coordinated by two *p*-nitrobenzoylhydrazine molecules, a water molecules and a bidentate chelating nitrate. These ligands create atypical seven coordination sphere around the Cd atom and the geometry around Cd can be described as a pentagonal bipyramid. The Cd— $O_{nitrate}$ bond lenghts difference, Co—O—N angles difference and Co—N— $O_{terminal}$ are 0.18 Å, 7.9° and 173° respectively, and correlate well with the bidentate mode of the nitrate group (Kleywegt *et al.*, 1985; Dowling *et al.*, 1996). Noncoordinated and bidentate chelating nitrates create hydrogen bonding network in *a* and *b* directions, respectively. Interestingly, both oxygen atoms from the – NO_2 groups do not participate in hydrogen bonding network. But two parallel-oriented organic ligands help to establish the packing.

Experimental

1.8 g (1 mmol) of *p*-nitrobenzoylhydrazine was dissolved in 50 ml hot ethanol and mixed with 3 ml e thanolic solution of $Cd(NO_3)_2$ (3.1 g; 1 mmol). Pale yellow crystals were formed after 24 h, then filtered, washed with ethanol and dried in the air.

Refinement

All the hydrogen atoms were visible in the difference maps and were included in the refinements with isotropic displacement parameters correlated with the anisotropic displacement parameters of the atoms to which they were bonded [C—H 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$]. The positions of hydrogen atoms from hydrazine group and water molecules were determined from the difference maps and were not refined [$U_{iso}(H) = 1.5U_{eq}(N, O)$].

Figures

Fig. 1. Molecular diagram of the title compound; displacement ellipsoids are drawn at 50% probability level.

Aqua(nitrato- $\kappa^2 O, O'$)bis(4-nitrobenzohydrazide- $\kappa^2 N^2, O$)cadmium(II) nitrate

Z = 2

Crystal data [Cd(NO₃)(C₇H₇N₃O₃)₂(H₂O)]NO₃

$M_r = 616.75$	$F_{000} = 616$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.922 \ {\rm Mg \ m^{-3}}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 5.6112 (5) Å	Cell parameters from 4512 reflections
b = 13.1253 (12) Å	$\theta = 3.8 - 28.7^{\circ}$
c = 14.8985 (13) Å	$\mu = 1.11 \text{ mm}^{-1}$
$\alpha = 101.314 \ (8)^{\circ}$	T = 293 (2) K
$\beta = 96.944 \ (7)^{\circ}$	Prism, pale yellow
$\gamma = 92.410 \ (7)^{\circ}$	$0.52 \times 0.38 \times 0.27 \text{ mm}$
$V = 1065.60 (16) \text{ Å}^3$	

Data collection

Kuma KM-4 with CCD area-detector diffractometer	5431 independent reflections
Radiation source: fine-focus sealed tube	4512 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.027$
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm ⁻¹	$\theta_{max} = 28.7^{\circ}$
T = 293(2) K	$\theta_{\min} = 3.8^{\circ}$
ω scans	$h = -7 \rightarrow 5$
Absorption correction: numerical (CrysAlis; Mayer, 2006)	$k = -17 \rightarrow 17$
$T_{\min} = 0.732, T_{\max} = 0.871$	$l = -20 \rightarrow 19$
15437 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.026$	H-atom parameters constrained
$wR(F^2) = 0.052$	$w = 1/[\sigma^2(F_o^2) + (0.0267P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 0.97	$(\Delta/\sigma)_{\text{max}} = 0.002$
5431 reflections	$\Delta \rho_{max} = 0.97 \text{ e } \text{\AA}^{-3}$
325 parameters	$\Delta \rho_{min} = -0.48 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.59006 (2)	0.274165 (10)	0.565944 (9)	0.03011 (5)
C1A	0.5103 (3)	0.52629 (13)	0.81049 (12)	0.0261 (4)
C11A	0.5625 (3)	0.46464 (13)	0.71999 (13)	0.0290 (4)
011A	0.4313 (2)	0.38598 (10)	0.68154 (10)	0.0407 (3)
N11A	0.7531 (3)	0.49594 (12)	0.68482 (11)	0.0348 (4)
H11A	0.8437	0.5527	0.7047	0.052*
N12A	0.8041 (3)	0.43772 (14)	0.59929 (12)	0.0460 (4)
H21A	0.9605	0.4373	0.6088	0.069*
H22A	0.7648	0.4700	0.5550	0.069*
C2A	0.6575 (3)	0.61149 (14)	0.86218 (13)	0.0330 (4)
H2A	0.7939	0.6339	0.8398	0.040*
C3A	0.6004 (3)	0.66265 (14)	0.94665 (13)	0.0326 (4)
H3A	0.6975	0.7193	0.9815	0.039*
C4A	0.3976 (3)	0.62799 (13)	0.97783 (12)	0.0268 (4)
N41A	0.3394 (3)	0.68027 (12)	1.06882 (11)	0.0333 (4)
O41A	0.1525 (3)	0.65143 (12)	1.09355 (10)	0.0501 (4)
O42A	0.4805 (3)	0.74886 (12)	1.11520 (10)	0.0508 (4)
C5A	0.2474 (3)	0.54486 (14)	0.92790 (13)	0.0323 (4)
H5A	0.1096	0.5238	0.9502	0.039*
C6A	0.3066 (3)	0.49366 (14)	0.84399 (13)	0.0318 (4)
H6A	0.2088	0.4369	0.8098	0.038*
C1B	0.8042 (3)	0.06198 (13)	0.76333 (12)	0.0260 (4)
C11B	0.6867 (3)	0.12651 (13)	0.70058 (11)	0.0249 (4)
O11B	0.8056 (2)	0.19365 (10)	0.67342 (9)	0.0330 (3)
N11B	0.4503 (3)	0.10695 (12)	0.67616 (11)	0.0299 (3)
H11B	0.3780	0.0572	0.6923	0.045*
N12B	0.3254 (3)	0.15387 (12)	0.60875 (11)	0.0308 (3)
H21B	0.2814	0.1053	0.5615	0.046*
H22B	0.2058	0.1828	0.6323	0.046*
C2B	1.0212 (3)	0.10100 (14)	0.81649 (13)	0.0302 (4)
H2B	1.0826	0.1678	0.8162	0.036*
C3B	1.1467 (3)	0.04045 (14)	0.87002 (13)	0.0332 (4)
H3B	1.2942	0.0651	0.9047	0.040*
C4B	1.0468 (3)	-0.05734 (14)	0.87046 (12)	0.0297 (4)
N41B	1.1799 (3)	-0.12260 (13)	0.92644 (11)	0.0364 (4)
O41B	1.0684 (3)	-0.19375 (12)	0.94828 (11)	0.0521 (4)
O42B	1.3962 (3)	-0.10346 (13)	0.94729 (13)	0.0647 (5)
C5B	0.8303 (3)	-0.09710 (15)	0.82013 (14)	0.0345 (4)
H5B	0.7669	-0.1630	0.8225	0.041*
C6B	0.7087 (3)	-0.03661 (14)	0.76572 (13)	0.0337 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H6B	0.5623	-0.0622	0.7306	0.040*
N1A	0.8415 (3)	0.12829 (13)	0.44641 (11)	0.0383 (4)
O1A	0.9180 (2)	0.22135 (10)	0.48264 (9)	0.0382 (3)
O2A	0.6359 (3)	0.09945 (13)	0.45746 (11)	0.0556 (4)
O3A	0.9691 (3)	0.06939 (14)	0.40305 (15)	0.0834 (7)
OW1	0.3449 (2)	0.32151 (12)	0.45157 (10)	0.0459 (4)
HW1	0.2073	0.2912	0.4406	0.069*
HW2	0.4094	0.3029	0.4051	0.069*
N1B	0.7706 (3)	0.32891 (13)	0.31690 (12)	0.0374 (4)
O1B	0.7783 (3)	0.40791 (12)	0.37923 (11)	0.0529 (4)
O2B	0.5936 (3)	0.26465 (13)	0.30181 (11)	0.0552 (4)
O3B	0.9381 (3)	0.31474 (12)	0.26942 (12)	0.0562 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.03195 (8)	0.02853 (8)	0.03017 (8)	0.00387 (5)	0.00567 (5)	0.00542 (5)
C1A	0.0274 (9)	0.0229 (8)	0.0294 (9)	0.0037 (7)	0.0061 (7)	0.0068 (7)
C11A	0.0313 (10)	0.0229 (9)	0.0334 (10)	0.0017 (7)	0.0068 (8)	0.0056 (8)
011A	0.0430 (8)	0.0320 (7)	0.0442 (8)	-0.0111 (6)	0.0201 (7)	-0.0050 (6)
N11A	0.0383 (9)	0.0304 (8)	0.0340 (9)	-0.0082 (7)	0.0136 (7)	-0.0006 (7)
N12A	0.0553 (11)	0.0431 (10)	0.0381 (10)	-0.0116 (8)	0.0232 (9)	-0.0023 (8)
C2A	0.0301 (10)	0.0301 (10)	0.0394 (11)	-0.0027 (8)	0.0119 (8)	0.0052 (8)
C3A	0.0305 (10)	0.0265 (9)	0.0373 (10)	-0.0048 (8)	0.0043 (8)	-0.0001 (8)
C4A	0.0286 (9)	0.0250 (9)	0.0275 (9)	0.0049 (7)	0.0051 (7)	0.0052 (7)
N41A	0.0385 (9)	0.0304 (8)	0.0312 (8)	0.0016 (7)	0.0072 (7)	0.0048 (7)
O41A	0.0526 (9)	0.0513 (9)	0.0458 (9)	-0.0077 (7)	0.0255 (7)	-0.0005 (7)
O42A	0.0523 (9)	0.0511 (9)	0.0396 (8)	-0.0104 (8)	0.0059 (7)	-0.0104 (7)
C5A	0.0291 (10)	0.0336 (10)	0.0346 (10)	-0.0044 (8)	0.0096 (8)	0.0061 (8)
C6A	0.0303 (10)	0.0304 (9)	0.0323 (10)	-0.0047 (8)	0.0041 (8)	0.0019 (8)
C1B	0.0275 (9)	0.0263 (9)	0.0238 (8)	0.0026 (7)	0.0041 (7)	0.0038 (7)
C11B	0.0254 (9)	0.0240 (8)	0.0235 (8)	0.0023 (7)	0.0030(7)	0.0007 (7)
O11B	0.0265 (7)	0.0380 (7)	0.0370 (7)	-0.0032 (6)	0.0007 (6)	0.0168 (6)
N11B	0.0251 (8)	0.0310 (8)	0.0353 (8)	-0.0003 (6)	0.0023 (7)	0.0124 (7)
N12B	0.0247 (8)	0.0309 (8)	0.0351 (8)	0.0037 (6)	-0.0012 (7)	0.0055 (7)
C2B	0.0297 (10)	0.0258 (9)	0.0346 (10)	-0.0026 (7)	0.0012 (8)	0.0079 (8)
C3B	0.0294 (10)	0.0326 (10)	0.0348 (10)	-0.0035 (8)	-0.0050 (8)	0.0071 (8)
C4B	0.0320 (10)	0.0289 (9)	0.0298 (9)	0.0050 (8)	0.0030 (8)	0.0096 (8)
N41B	0.0368 (10)	0.0339 (9)	0.0380 (9)	0.0034 (7)	-0.0030 (8)	0.0106 (8)
O41B	0.0513 (10)	0.0496 (9)	0.0636 (10)	0.0014 (7)	0.0044 (8)	0.0336 (8)
O42B	0.0421 (10)	0.0599 (11)	0.0930 (14)	-0.0023 (8)	-0.0207 (9)	0.0366 (10)
C5B	0.0331 (10)	0.0282 (10)	0.0419 (11)	-0.0028 (8)	-0.0011 (9)	0.0111 (9)
C6B	0.0289 (10)	0.0308 (10)	0.0387 (11)	-0.0051 (8)	-0.0034 (8)	0.0070 (8)
N1A	0.0405 (10)	0.0376 (9)	0.0350 (9)	0.0023 (8)	0.0122 (8)	-0.0012 (8)
O1A	0.0403 (8)	0.0327 (7)	0.0396 (8)	-0.0032 (6)	0.0084 (6)	0.0014 (6)
O2A	0.0407 (9)	0.0597 (10)	0.0580 (10)	-0.0163 (7)	0.0172 (8)	-0.0108 (8)
O3A	0.0816 (14)	0.0546 (11)	0.1101 (16)	0.0039 (10)	0.0610 (13)	-0.0220 (11)
OW1	0.0313 (8)	0.0685 (10)	0.0401 (8)	0.0015 (7)	0.0009 (6)	0.0193 (7)

N1B	0.0343 (9)	0.0400 (10)	0.0411 (10)	-0.0030 (8)	0.0015 (8)	0.0191 (8)
O1B	0.0530 (10)	0.0456 (9)	0.0582 (10)	-0.0054 (7)	0.0150 (8)	0.0026 (8)
O2B	0.0460 (9)	0.0629 (10)	0.0527 (10)	-0.0268 (8)	-0.0003 (8)	0.0131 (8)
O3B	0.0514 (10)	0.0489 (9)	0.0706 (11)	-0.0043 (7)	0.0279 (9)	0.0072 (8)
Geometric param	neters (Å, °)					
Cd1—OW1		2.2590 (14)	C1	B—C2B	1	.389 (2)
Cd1—O11A		2.3242 (13)	C1	B—C11B	1	.495 (2)
Cd1—O11B		2.3339 (12)	C1	1B—011B	1	.241 (2)
Cd1—N12A		2.3489 (17)	C1	1B—N11B	1	.333 (2)
Cd1—N12B		2.3518 (16)	N1	1B—N12B	1	.410 (2)
Cd1—O1A		2.3934 (13)	N1	1B—H11B	0	.8442
Cd1—O2A		2.5755 (15)	N1	2B—H21B	0	.8560
C1A—C6A		1.386 (2)	N1	2B—H22B	0	.8629
C1A—C2A		1.399 (3)	C2	B—C3B	1	.387 (3)
C1A—C11A		1.499 (2)	C2	B—H2B	0	.9300
C11A—O11A		1.240 (2)	C3	B—C4B	1	.380 (3)
C11A—N11A		1.331 (2)	C3	B—H3B	0	.9300
N11A—N12A		1.419 (2)	C4	B—C5B	1	.372 (3)
N11A—H11A		0.8641	C4	B—N41B	1	.473 (2)
N12A—H21A		0.8728	N4	1B—O42B	1	.219 (2)
N12A—H22A		0.8639	N4	1B—O41B	1	.220 (2)
C2A—C3A		1.386 (3)	C5	B—C6B	1	.385 (3)
C2A—H2A		0.9300	C5	B—H5B	0	.9300
C3A—C4A		1.373 (2)	C6	B—H6B	0	.9300
СЗА—НЗА		0.9300	Nl	A—03A	1	.220 (2)
C4A—C5A		1.381 (3)	Nl	A—O2A	1	.239 (2)
C4A—N41A		1.475 (2)	NI	A—O1A	1	.268 (2)
N41A—O42A		1.216 (2)	OV	W1—HW1	0	.8358
N41A—O41A		1.222 (2)	01	W1—HW2	0	.8199
C5A—C6A		1.383 (3)	N1	B—O3B	1	.242 (2)
C5A—H5A		0.9300	N1	B-01B	1	.244 (2)
С6А—Н6А		0.9300	NI	B—O2B	1	.245 (2)
C1B—C6B		1.388 (2)				
OW1-Cd1-014	A	98.97 (5)	C4	А—С5А—Н5А	1	20.7
OW1—Cd1—O24	A	89.50 (6)	C6	А—С5А—Н5А	1	20.7
OW1-Cd1-011	IA	93.34 (5)	C5	A—C6A—C1A	1	20.53 (17)
OW1-Cd1-011	lB	168.98 (5)	C5	А—С6А—Н6А	1	19.7
OW1-Cd1-N12	2A	90.92 (6)	C1	А—С6А—Н6А	1	19.7
OW1-Cd1-N12	2B	99.57 (5)	C6	B—C1B—C2B	1	20.07 (16)
011A—Cd1—01	A	150.85 (5)	C6	B—C1B—C11B	1	21.82 (16)
011A—Cd1—O2	A	155.97 (5)	C2	B—C1B—C11B	1	18.03 (15)
011A—Cd1—01	1B	91.78 (5)	01	1B—C11B—N11B	1	22.99 (16)
011A—Cd1—N1	2A	69.88 (5)	01	1B—C11B—C1B	1	21.07 (15)
011A—Cd1—N1	2B	80.91 (5)	N1	1B—C11B—C1B	1	15.94 (15)
011B—Cd1—01	A	81.00 (5)	C1	IB—O11B—Cd1	1	14.86 (11)
011B—Cd1—O2	A	81.90 (5)	C1	IB—N11B—N12B	1	20.89 (14)
011B—Cd1—N1	2A	100.01 (6)	C1	1B—N11B—H11B	1	20.1

O11B—Cd1—N12B	71.62 (5)	N12B—N11B—H11B	117.8
N12A—Cd1—O1A	83.53 (5)	N11B—N12B—Cd1	109.29 (10)
N12A—Cd1—O2A	133.98 (5)	N11B—N12B—H21B	106.6
N12A—Cd1—N12B	149.50 (6)	Cd1—N12B—H21B	108.0
N12B—Cd1—O1A	122.36 (5)	N11B—N12B—H22B	107.2
N12B—Cd1—O2A	75.09 (5)	Cd1—N12B—H22B	112.5
O1A—Cd1—O2A	51.06 (4)	H21B—N12B—H22B	113.0
C6A—C1A—C2A	119.63 (16)	C3B—C2B—C1B	120.11 (17)
C6A—C1A—C11A	116.70 (16)	C3B—C2B—H2B	119.9
C2A—C1A—C11A	123.66 (16)	C1B—C2B—H2B	119.9
O11A—C11A—N11A	122.42 (17)	C4B—C3B—C2B	118.22 (17)
O11A—C11A—C1A	119.54 (16)	C4B—C3B—H3B	120.9
N11A—C11A—C1A	118.03 (16)	C2B—C3B—H3B	120.9
C11A—O11A—Cd1	115.35 (12)	C5B—C4B—C3B	122.94 (17)
C11A—N11A—N12A	118.33 (15)	C5B—C4B—N41B	118.46 (16)
C11A—N11A—H11A	127.5	C3B—C4B—N41B	118.59 (16)
N12A—N11A—H11A	113.8	O42B—N41B—O41B	123.56 (17)
N11A—N12A—Cd1	109.97 (11)	O42B—N41B—C4B	118.14 (16)
N11A—N12A—H21A	101.8	O41B—N41B—C4B	118.29 (16)
Cd1—N12A—H21A	116.1	C4B—C5B—C6B	118.30 (17)
N11A—N12A—H22A	110.9	C4B—C5B—H5B	120.9
Cd1—N12A—H22A	109.0	C6B—C5B—H5B	120.9
H21A—N12A—H22A	108.9	C5B—C6B—C1B	120.33 (17)
C3A—C2A—C1A	120.16 (17)	C5B—C6B—H6B	119.8
СЗА—С2А—Н2А	119.9	C1B—C6B—H6B	119.8
C1A—C2A—H2A	119.9	O3A—N1A—O2A	121.62 (18)
C4A—C3A—C2A	118.62 (17)	O3A—N1A—O1A	120.49 (18)
С4А—С3А—НЗА	120.7	O2A—N1A—O1A	117.88 (16)
С2А—С3А—Н3А	120.7	N1A—O1A—Cd1	99.38 (11)
C3A—C4A—C5A	122.53 (17)	N1A—O2A—Cd1	91.41 (11)
C3A—C4A—N41A	118.90 (16)	Cd1—OW1—HW1	114.8
C5A—C4A—N41A	118.56 (16)	Cd1—OW1—HW2	104.6
O42A—N41A—O41A	123.75 (17)	HW1—OW1—HW2	106.1
O42A—N41A—C4A	118.31 (16)	O3B—N1B—O1B	120.05 (17)
O41A—N41A—C4A	117.94 (16)	O3B—N1B—O2B	120.16 (18)
C4A—C5A—C6A	118.51 (17)	O1B—N1B—O2B	119.78 (18)
C6A—C1A—C11A—O11A	-3.2 (3)	N12A—Cd1—O11B—C11B	150.92 (12)
C2A—C1A—C11A—O11A	175.24 (18)	N12B—Cd1—O11B—C11B	1.23 (12)
C6A—C1A—C11A—N11A	178.11 (17)	O1A—Cd1—O11B—C11B	-127.35 (13)
C2A—C1A—C11A—N11A	-3.4 (3)	O2A-Cd1-O11B-C11B	-75.68 (12)
N11A—C11A—O11A—Cd1	14.9 (2)	O11B—C11B—N11B—N12B	7.5 (3)
C1A—C11A—O11A—Cd1	-163.67 (12)	C1B—C11B—N11B—N12B	-172.32 (14)
OW1—Cd1—O11A—C11A	-106.43 (14)	C11B—N11B—N12B—Cd1	-5.45 (18)
O11B-Cd1-O11A-C11A	83.33 (14)	OW1—Cd1—N12B—N11B	175.23 (10)
N12A—Cd1—O11A—C11A	-16.68 (14)	O11A—Cd1—N12B—N11B	-92.89 (11)
N12B—Cd1—O11A—C11A	154.41 (14)	O11B—Cd1—N12B—N11B	2.05 (10)
O1A—Cd1—O11A—C11A	8.7 (2)	N12A—Cd1—N12B—N11B	-76.23 (16)
O2A—Cd1—O11A—C11A	157.28 (13)	O1A—Cd1—N12B—N11B	68.13 (12)
O11A—C11A—N11A—N12A	1.2 (3)	O2A—Cd1—N12B—N11B	88.32 (11)

C1A—C11A—N11A—N12A	179.79 (16)	C6B—C1B—C2B—	C6B—C1B—C2B—C3B		
C11A—N11A—N12A—Cd1	-15.8 (2)	C11B—C1B—C2B-	C11B—C1B—C2B—C3B		
OW1—Cd1—N12A—N11A	109.00 (13)	C1B—C2B—C3B—	C1B—C2B—C3B—C4B		
O11A—Cd1—N12A—N11A	15.78 (12)	C2B—C3B—C4B—	C5B	0.3 (3)	
O11B—Cd1—N12A—N11A	-72.44 (13)	C2B—C3B—C4B—	N41B	179.43 (16)	
N12B—Cd1—N12A—N11A	-1.8 (2)	C5B—C4B—N41B-	O42B	157.60 (19)	
O1A—Cd1—N12A—N11A	-152.07 (14)	C3B—C4B—N41B-	O42B	-21.6 (3)	
O2A—Cd1—N12A—N11A	-160.80 (11)	C5B—C4B—N41B-	O41B	-21.4 (3)	
C6A—C1A—C2A—C3A	0.3 (3)	C3B—C4B—N41B-	O41B	159.45 (18)	
C11A—C1A—C2A—C3A	-178.11 (17)	C3B—C4B—C5B—	C6B	0.8 (3)	
C1A—C2A—C3A—C4A	-0.1 (3)	N41B-C4B-C5B-	C6B	-178.35 (16)	
C2A—C3A—C4A—C5A	-0.6 (3)	C4B—C5B—C6B—	C1B	-0.5 (3)	
C2A—C3A—C4A—N41A	178.35 (16)	C2B—C1B—C6B—	C5B	-0.8 (3)	
C3A—C4A—N41A—O42A	-3.8 (3)	C11B—C1B—C6B-	С5В	175.71 (17)	
C5A—C4A—N41A—O42A	175.18 (17)	03A—N1A—01A-	-Cd1	-173.76 (18)	
C3A—C4A—N41A—O41A	176.75 (17)	02A-N1A-01A-	-Cd1	5.45 (19)	
C5A—C4A—N41A—O41A	-4.3 (2)	OW1—Cd1—O1A—	OW1—Cd1—O1A—N1A		
C3A—C4A—C5A—C6A	1.1 (3)	O11A-Cd1-O1A-	O11A—Cd1—O1A—N1A		
N41A—C4A—C5A—C6A	-177.84 (16)	O11B-Cd1-O1A-	O11B—Cd1—O1A—N1A		
C4A—C5A—C6A—C1A	-0.9 (3)	N12A-Cd1-01A-	N12A—Cd1—O1A—N1A		
C2A—C1A—C6A—C5A	0.2 (3)	N12B—Cd1—O1A—N1A		22.41 (13)	
C11A—C1A—C6A—C5A	178.74 (17)	O2A—Cd1—O1A—	-N1A	-2.98 (11)	
C6B—C1B—C11B—O11B	-153.76 (18)	O3A—N1A—O2A-	O3A—N1A—O2A—Cd1		
C2B—C1B—C11B—O11B	22.8 (2)	01A—N1A—02A-	O1A—N1A—O2A—Cd1		
C6B—C1B—C11B—N11B	26.0 (2)	OW1—Cd1—O2A—N1A		104.98 (12)	
C2B—C1B—C11B—N11B	-157.42 (16)	O11A—Cd1—O2A—N1A		-157.92 (12)	
N11B—C11B—O11B—Cd1	-4.9 (2)	O11B-Cd1-O2A-	O11B—Cd1—O2A—N1A		
C1B-C11B-O11B-Cd1	174.84 (11)	N12A-Cd1-O2A-	-N1A	14.19 (16)	
OW1-Cd1-O11B-C11B	-36.6 (3)	N12B-Cd1-O2A-	-N1A	-154.98 (13)	
O11A-Cd1-O11B-C11B	81.04 (12)	O1A—Cd1—O2A—	-N1A	3.01 (11)	
Hydrogen-bond geometry (Å, °)					
D—H···A	D—H	H…A	$D^{\dots}A$	D—H··· A	
N11A—H11A····O3B ⁱ	0.86	2.03	2.886 (2)	171.2	
N12A—H21A…O1B ⁱ	0.87	2.42	2.977 (2)	122.2	
N12A—H22A····O1B	0.86	2.60	3 2.09 (2)	128.8	
N11B_H11BO2A ⁱⁱ	0.84	2.59	3 176 (2)	127.6	
INITE IIIID OJA	0.01	2.07	2.170 (2)	127.0	

N11B—H11B···O3A ⁱⁱ	0.84	2.59	3.176 (2)	127.6
N12B—H22B…O11B ⁱⁱⁱ	0.86	2.40	3.212 (2)	156.9
OW1—HW1···O1A ⁱⁱⁱ	0.84	2.05	2.815 (2)	151.2
OW1—HW2···O2B	0.82	1.95	2.769 (2)	174.2
~				

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*+1; (iii) *x*-1, *y*, *z*.

